1,364 research outputs found

    The application of electromagnetic NDT method to the inspection of non-ferrous cast materials

    Get PDF
    Inspection of non-ferrous cast material is routinely carried out looking for casting defects inherent for the manufacturing process. The NDT methods employed are Radiography and Ultrasonics, primarily for sub-surface or internal defects and Penetrants fo r surface breaking defects. Electromagnetic techniques have not been used on cast material except maybe for conductivity determination. This limitation resulting fi7om the surface roughness normally associated with cast surfaces and the fact the other techniques mention above have been very successful in finding and evaluating the discontinuities sought. The possible application of Electromagnetic techniques on surfaces in the as-cast condition of non-ferromagnetic material came about because of specific problems experienced by industry. Two major investigations were offered namely; 1) Investigation of CNC material - CuNiCr [1.6%Cr] castings exhibiting oxide entrapment in the form of networks. 2) Investigation of NAB - Nickel Aluminium Bronze exhibiting selective phase corrosion on immersion in seawater. The detection and measurement of both oxide entrapment and phase selective corrosion was difficult and in cases impossible with conventional NDT methods employed for quality control of these material/component types. Time of Flight DiMaction Ultrasonics did give some 50% detectability of phase selective corrosion, but the method was found to be expensive and very time consuming. The metallurgical properties of the material and morphology of the defects have been studied for both Cupro Nickel Chromium and Nickel Aluminium Bronze cast alloys. An investigation was then conducted to study the effects of eddy current signals and their potential in detecting, both linear and cluster type defects which were predominantly interdendritic with some reported as intergranular in nature. For inspecting Cupro Nickel Chromium castings two successful eddy current methods have been developed. Detection of surface flaws was achieved by high frequency [2MHzj examination and subsurface flaws by using low frequencies [1--'IKHz] but using specifically developed sensors that provided good penetration but maintained sensitivity to the fine defects. In the case of Nickel Aluminium Bronze material, the investigation was to look at electromagnetic techniques, which best utilizes the inherent feature of permeability/conductivity associated with this non- ferromagnetic material and any changes that phase selective corrosion may produce. Some meaningful results were obtained using a combination of edd'y current excitation with detection via magneto -re s istive sensors. Testing through 30-40mm of material to detect small magnetic variation produced by only 1-2 mm of corrosion penetration was difficult to quantify. Detection and assessment however appeared hopeful when examination was carried out from the corroded surface. With quantifiable samples a meaningful technique using eddy current excitation and magneto-resistive sensor for detection can be developed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Fermi surface of the colossal magnetoresistance perovskite La_{0.7}Sr_{0.3}MnO_{3}

    Full text link
    Materials that exhibit colossal magnetoresistance (CMR) are currently the focus of an intense research effort, driven by the technological applications that their sensitivity lends them to. Using the angular correlation of photons from electron-positron annihilation, we present a first glimpse of the Fermi surface of a material that exhibits CMR, supported by ``virtual crystal'' electronic structure calculations. The Fermi surface is shown to be sufficiently cubic in nature that it is likely to support nesting.Comment: 5 pages, 5 PS figure

    The Critical Behaviour of the Spin-3/2 Blume-Capel Model in Two Dimensions

    Full text link
    The phase diagram of the spin-3/2 Blume-Capel model in two dimensions is explored by conventional finite-size scaling, conformal invariance and Monte Carlo simulations. The model in its τ\tau-continuum Hamiltonian version is also considered and compared with others spin-3/2 quantum chains. Our results indicate that differently from the standard spin-1 Blume-Capel model there is no multicritical point along the order-disorder transition line. This is in qualitative agreement with mean field prediction but in disagreement with previous approximate renormalization group calculations. We also presented new results for the spin-1 Blume-Capel model.Comment: latex 18 pages, 4 figure

    The biosocial event : responding to innovation in the life sciences

    Get PDF
    Innovation in the life sciences calls for reflection on how sociologies separate and relate life processes and social processes. To this end we introduce the concept of the ‘biosocial event’. Some life processes and social processes have more mutual relevance than others. Some of these relationships are more negotiable than others. We show that levels of relevance and negotiability are not static but can change within existing relationships. Such changes, or biosocial events, lie at the heart of much unplanned biosocial novelty and much deliberate innovation. We illustrate and explore the concept through two examples – meningitis infection and epidemic, and the use of sonic ‘teen deterrents’ in urban settings. We then consider its value in developing sociological practice oriented to critically constructive engagement with innovation in the life sciences

    Consistent Treatment of Relativistic Effects in Electrodisintegration of the Deuteron

    Get PDF
    The influence of relativistic contributions to deuteron electrodisintegration is systematically studied in various kinematic regions of energy and momentum transfer. As theoretical framework the equation-of-motion and the unitarily equivalent S-matrix approaches are used. In a (p/M)-expansion, all leading order relativistic π\pi-exchange contributions consistent with the Bonn OBEPQ model are included. In addition, static heavy meson exchange currents including boost terms, γπρ/ω\gamma\pi\rho/\omega-currents, and Δ\Delta-isobar contributions are considered. Sizeable effects from the various relativistic two-body contributions, mainly from π\pi-exchange, have been found in inclusive form factors and exclusive structure functions for a variety of kinematic regions.Comment: 41 pages revtex including 15 postscript figure

    A Fermi Surface study of Ba1x_{1-x}Kx_{x}BiO3_{3}

    Full text link
    We present all electron computations of the 3D Fermi surfaces (FS's) in Ba1x_{1-x}Kx_{x}BiO3_{3} for a number of different compositions based on the selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) approach for incorporating the effects of Ba/K substitution. By assuming a simple cubic structure throughout the composition range, the evolution of the nesting and other features of the FS of the underlying pristine phase is correlated with the onset of various structural transitions with K doping. A parameterized scheme for obtaining an accurate 3D map of the FS in Ba1x_{1-x}Kx_{x}BiO3_{3} for an arbitrary doping level is developed. We remark on the puzzling differences between the phase diagrams of Ba1x_{1-x}Kx_{x}BiO3_{3} and BaPbx_{x}Bi1x_{1-x}O3_{3} by comparing aspects of their electronic structures and those of the end compounds BaBiO3_{3}, KBiO3_3 and BaPbO3_3. Our theoretically predicted FS's in the cubic phase are relevant for analyzing high-resolution Compton scattering and positron-annihilation experiments sensitive to the electron momentum density, and are thus amenable to substantial experimental verification.Comment: 12 pages, 7 figures, to appear in Phys. Rev.

    Electron attachment to valence-excited CO

    Get PDF
    The possibility of electron attachment to the valence 3Π^{3}\Pi state of CO is examined using an {\it ab initio} bound-state multireference configuration interaction approach. The resulting resonance has 4Σ^{4}\Sigma^{-} symmetry; the higher vibrational levels of this resonance state coincide with, or are nearly coincident with, levels of the parent a3Πa^{3}\Pi state. Collisional relaxation to the lowest vibrational levels in hot plasma situations might yield the possibility of a long-lived CO^- state.Comment: Revtex file + postscript file for one figur

    Enhancing Optical Up-Conversion Through Electrodynamic Coupling with Ancillary Chromophores

    Get PDF
    In lanthanide-based optical materials, control over the relevant operating characteristics–for example transmission wavelength, phase and quantum efficiency–is generally achieved through the modification of parameters such as dopant/host combination, chromophore concentration and lattice structure. An alternative avenue for the control of optical response is through the introduction of secondary, codoped chromophores. Here, such secondary centers act as mediators, commonly bridging the transfer of energy between primary absorbers of externally sourced optical input and other sites of frequency-converted emission. Utilizing theoretical models based on experimentally feasible, three-dimensional crystal lattice structures; a fully quantized theoretical framework provides insights into the locally modified mechanisms that can be implemented within such systems. This leads to a discussion of how such effects might be deployed to either enhance, or potentially diminish, the efficiency of frequency up-conversion

    On isovector meson exchange currents in the Bethe-Salpeter approach

    Get PDF
    We investigate the nonrelativistic reduction of the Bethe-Salpeter amplitude for the deuteron electrodisintegration near threshold energies. To this end, two assumptions have been used in the calculations: 1) the static approximation and 2) the one iteration approximation. Within these assumptions it is possible to recover the nonrelativistic result including a systematic extension to relativistic corrections. We find that the so-called pair current term can be constructed from the PP-wave contribution of the deuteron Bethe-Salpeter amplitude. The form factor that enters into the calculation of the pair current is constrained by the manifestly gauge independent matrix elements.Comment: 15 pages, incl. 3 figures, to be published Phys. Rev.
    corecore